A Reappraisal of the Structure of the Second Stable Conformer of Buta-1,3-diene

By Charles W. Bock, Department of Chemistry, Philadelphia College of Textiles and Science, Philadelphia, Pennsylvania 19144, U.S.A.
Philip George,* Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19174, U.S.A.
Mendel Trachtman, Department of Chemistry, Weizmann Institute of Science, Rehovot, Israel
Murray Zanger, Department of Chemistry, Philadelphia College of Pharmacy and Science, Philadelphia, Pennsylvania, U.S.A.

The structure of the second stable conformer of buta-1,3-diene was investigated by computing the torsional frequencies and the resulting variation of the heat capacity with temperature ($220-320 \mathrm{~K}$) from potential energy curves based (a) on calorimetric and spectroscopic data and (b) on a comprehensive set of ab initio calculations. In general, there was good agreement between the ab initio predictions and the experimental frequencies localized in the trans-well. However, the ab initio values for the torsional frequencies localized in the second well. and the temperature variation of $C_{p}{ }^{\circ}$ based on the potential curves derived from the spectroscopic data, did not support the assignment of frequencies observed at 271.1 and $263.9 \mathrm{~cm}^{-1}$ to the second stable form. A new potential energy curve is proposed, which is in better agreement with the predictions of the ab initio calculations, and which accounts very well for the observed spectra and temperature variation of $C_{\mathrm{p}}{ }^{\circ}$.

The shape of the potential energy curve for rotation about the formal $\mathrm{C}-\mathrm{C}$ single bond in buta-1,3-diene has been the subject of many experimental ${ }^{1-4}$ and $a b$ initio theoretical ${ }^{5-11}$ investigations. All these studies have shown the most stable form to be the planar transconformation, in accord with several independent electron diffraction analyses. ${ }^{12-14, ~} \dagger$ There is, however, considerable disagreement as to whether the second slightly less stable form has a planar cis-structure or a nonplanar gauche-structure. There is also lack of agreement as to the precise position and height of the peak in the potential curve separating the two conformers. Values for its position range from ca. 70 to 95° (with the trans-conformer taken as 0°), and from ca. 5.0 to 7.6 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ for the barrier height. ${ }^{1-11}$

An accurate determination of the potential curve is important since it is the simplest case of rotation about a formal single bond in an acyclic conjugated structure, and thus serves as the model for semiempirical SCF-MO and empirical consistent force field calculations for more complicated structures of this kind. Furthermore, the height of the peak is important within the context of the homodesmotic reaction approach to the evaluation of delocalization energies for conjugated and aromatic hydrocarbons. ${ }^{19-21} \quad 90^{\circ}$-Buta-1,3-diene is utilized as a reference structure in which stabilization by overlap of adjacent p-lobes across the central formal single bond is reduced to a minimum, and an accurate assessment of peak height and position is essential to get its heat of formation which is needed in the calculations.

Unfortunately, however, each determination of the torsional potential curve for butadiene has, of necessity, involved certain assumptions and/or approximations.
(1) Aston et al. ${ }^{1 a}$ employed a statistical mechanical model to calculate the entropy, specific heat, and change

[^0]of specific heat with temperature. By adjusting the height and position of the barrier and the torsional frequency (which was not accurately known at that time) they obtained a good fit for all three experimental quantities. ${ }^{22}$ Two notable assumptions were made: (i) the second stable form was assumed to be cis, and (ii) the bond lengths and angles of this cis form were assumed to be the same as for the trans-form (i.e. a rigid rotation model was adopted). Furthermore, some of the vibrational frequencies employed by these authors differ from current assignments by up to $500 \mathrm{~cm}^{-1}$. ${ }^{1 c, 23}$
(2) Carreira, ${ }^{3}$ more recently, measured the torsional frequencies using a laser Raman technique, some of which had been observed earlier by Cole et al. ${ }^{24} \mathrm{Al}-$ though this was a crucial experiment which has clarified the shape of the potential well near 0° (trans), it has unfortunately led to further confusion regarding the nature of the second stable form. The difficulty is that the progression of observed torsional peaks appears to be interrupted at $c a .280 \mathrm{~cm}^{-1}$. This requires an assignment of the peaks observed at $271.1,263.9$, and 256.7 cm^{-1} to either the trans-conformer or to the second less stable form, either cis or gauche. Carriera chose the cis-form and, using a computer program based on that of Lewis et al., ${ }^{25}$ showed that the observed spectrum could be adequately accounted for. However, an assumption had to be made. To use the Lewis et al. program it is necessary to choose a model for the change in bond lengths and angles during the rotation. Carreira adopted Allinger's molecular mechanics model, ${ }^{26}$ which entails a change in the $\mathrm{C}-\mathrm{C}$ formal single bond length from $1.468 \AA$ in the trans-position to $1.518 \AA$ in the 90° position, and to $1.471 \AA$ at 180°. However, such a large increase of $0.050 \AA$ from the trans to the 90° position is not supported by the $a b$ initio studies of Skaarup et al. ${ }^{10}$ or Altmann et al., ${ }^{11}$ who find the increase to be only $0.021-0.022 \AA$. Durig et al. ${ }^{4}$ have recently questioned this structural model. They re-evaluated the potential curve using Carreira's spectroscopic data and the Lewis et al. program but assumed a model in which the formal single bond length decreases with rotation away from the
trans position. This model was based on experimental structural data on glyoxal which suggests that the central single bond is shorter in the cis- than in the transform. ${ }^{12,27}$ This is not likely to be true for buta-1,3diene. ${ }^{10}$ Durig et al. assigned the peaks below $280 \mathrm{~cm}^{-1}$ first to a cis-well and then to a gauche-well, and obtained excellent agreement with experiment in both cases, even though the curves differ substantially from each other and from that of Carreira. Unfortunately their calculation of the reduced moment of inertia was in error ${ }^{28}$ which casts some doubt on their conclusions.
(3) Recently Compton et al. ${ }^{1 c}$ re-evaluated the work of Aston et al. ${ }^{1 a}$ considering the possibility of a gauche- as well as a cis-conformation. They found the energy difference between the trans- and the gauche- and cisconformers to be 2.71 and $2.48 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively, and concluded the second conformer was cis since the value of $2.48 \mathrm{kcal} \mathrm{mol}^{-1}$ is in better agreement with the
the resulting variation of heat capacity with temperature using a simple statistical mechanical model. Secondly, we repeat the calculations of Durig et al. using a geometry based on ab initio calculations. Thirdly, we investigate the importance of the choice of a specific model for the relaxation of bond lengths and angles during the rotation. Finally, we discuss the possibility that the frequencies observed at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ may be due to higher level transitions within the trans-well and not to transitions belonging to the second stable form.

RESULTS

A Potential Curves and Spectroscopic Data.-In Table 1, we list values for the $\mathrm{C}-\mathrm{C}$ bond lengths and $\mathrm{C} \widehat{\mathrm{C}} \mathrm{C}$ angles in trans-, 90°-, and cis-buta-1,3-diene for the three models which will be used to study the torsional twist about the central $\mathrm{C}-\mathrm{C}$ bond. Rigid rotation retaining the experimental geometry of the trans-conformer ${ }^{12}$ on the one hand,

Table 1
$\mathrm{C}-\mathrm{C}$ Bond lengths and $\widehat{C C C}$ angles in the three model structures used to study the rotation about the central $\mathrm{C}-\mathrm{C}$ bond in buta-1,3-diene

	Rigid rotation model ${ }^{\text {a,b }}$			Adjusted model based upon ab initio calculations ${ }^{c}$			Molecular mechanics model ${ }^{\text {d }}$		
	trans	90°	180°	trans	90°	180°	trans	90°	180°
$\mathrm{C}-\mathrm{C}(\AA)$	1.463	1.463	1.463	1.463	1.484	1.473	1.468	1.518	1.471
$\mathrm{C}=\mathrm{C}(\AA)$	1.342	1.342	1.342	1.342	1.338	1.342	1.346	1.336	1.346
$\widehat{\mathrm{CCC}}\left({ }^{\circ}\right)$	123.6	123.6	123.6	123.6	123.3	125.9	122.3	120.7	125.7

${ }^{a}$ All $\mathrm{C}-\mathrm{H}$ bond lengths taken as $1.093 \AA$, and $\widehat{\mathrm{C} H}$ angles as $120.9^{\circ} .^{12} \quad{ }^{b}$ This geometry is close to that obtained in the electron diffraction study, ${ }^{12}$ and was used in all cases of rigid rotation considered in this paper. ${ }^{c}$ Based upon the results of Skaarup et al., ${ }^{10}$ with adjustments to bring them more in line with the experimental values, see text. In their notation in the trans-conformer $r(\mathrm{C}-\mathrm{H})=1.094, r\left(\mathrm{C}-\mathrm{H}^{\prime}\right)=1.091, r\left(\mathrm{C}-\mathrm{H}^{\prime \prime}\right)=1.093 \AA, \widehat{\mathrm{CCH}}=119.6, \widehat{\mathrm{CH}} \mathrm{H}^{\prime}=121.8$, and $\widehat{\mathrm{CCH}^{\prime \prime}=121.8^{\circ} \text {. The variation of these }}$ bond lengths and angles as a function of the angle of rotation was also taken from this reference. ${ }^{\boldsymbol{d}}$ These results, obtained from the molecular mechanics program of Allinger et al. ${ }^{26}$ were kindly supplied to us by Dr. L. A. Carreira.
value of $2.50 \mathrm{kcal} \mathrm{mol}^{-1}$ obtained by Carreira. ${ }^{3}$ But this assumes the Carreira choice of a cis-well is correct and is not an independent check of the validity of this choice. Furthermore, if the Durig et al. ${ }^{4}$ assignment of the frequencies at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ to a gauchewell is correct, the trans-gauche energy difference is found to be $2.76 \mathrm{kcal} \mathrm{mol}^{-1}$, in better agreement with the higher (gauche) value of Compton et al. ${ }^{1 c}$
(4) With regard to the theoretical studies, the ab initio potential energy curves of Dumbacher, ${ }^{9}$ Pincelli et al., ${ }^{8}$ Skancke et al., ${ }^{7}$ Radom et al., ${ }^{6}$ and Skaarup et al. ${ }^{10}$ were all obtained using relatively small basis sets (s and p functions only). Furthermore, either rigid rotation was assumed or only partial flexibility allowed (see, however, ref. 10). In addition electron correlation was either neglected or only partially included.

The purpose of this paper is four-fold. First, we assess the torsional potential curves proposed in the literature by computing the torsional frequencies and

[^1]and rotation of the flexible structure derived from the molecular mechanics program of Allinger et al. ${ }^{26}$ on the other hand, represent two extremes with respect to the increase in length of the central $\mathrm{C}-\mathrm{C}$ bond. In going from the trans- to the 90°-position the rigid rotation model assumes no change, whereas the molecular mechanics model predicts a large increase of $0.050 \AA$. To allow some variation in bond length and angle, but not to the extent of the molecular mechanics model, we have also considered a less flexible model based upon the recent ab initio geometry optimization by Skaarup et al. ${ }^{10}$ using a (7,3) basis set contracted to $\langle 5,3\rangle$ as $\langle 3,1,1,1,1 ; 1,1,1\rangle$. However, like other $a b$ initio calculations which use relatively small basis sets and neglect electron correlation, there are significant discrepancies between calculated and experimental values for the trans-conformer. For example, the formal $\mathrm{C}=\mathrm{C}$ double bond length was found to be only $1.320 \AA, c a$. $0.022 \AA$ too short. A similar discrepancy has been found with other basis sets for polyene structures. ${ }^{29-33, *}$ We have, therefore, made adjustments to get a more realistic geometry for the less flexible structure (see Table 1). \dagger No claim is made that this model is more 'correct' than that of Allinger. It is more flexible than a rigid rotation model, but less flexible than Allinger's model, so it is less likely to prejudice our conclusions.
\dagger In the following text we shall refer to this model as the 'adjusted ab initio model'.

To compute the energy levels and wavefunctions in the various potential wells, the curves were expressed by

Table 2
$F(\phi)$ Values (A) and their Fourier decomposition (B) for the models in Table 1

(A) ${ }^{\boldsymbol{\phi}}\left(^{\circ}\right.$) 0		Rigid rotation model	Adjusted $a b$ initio model ${ }^{a}$	Molecular mechanics model
		2.68	2.68	2.63
	30	2.68	$(2.67)^{\text {b }}$	2.61
	60	2.71		2.60
	90	2.85	2.85	2.70
	120	3.20		3.04
	(140)		3.60	
	150	3.73		3.80
	180	4.04	4.28	4.26
(B)	F_{0}	3.088	3.123	3.030
	F_{1}	-0.611	-0.681	-0.687
	F_{2}	0.253	0.315	0.375
	F_{3}	-0.063	-0.119	-0.127
	F_{4}	0.017	0.042	0.039
	F_{5}	-0.005		
	F_{6}	0.001		

${ }^{a}$ Skaarup et al. ${ }^{10}$ only reported values at $0,90,140$, and 180°. ${ }^{\text {b }}$ Although Skaarup et al. gave no value for 30°, we have included an estimated value of 2.67 in the analysis of $F(\phi)$ to flatten out the region near 0°, which is a characteristic feature of both the rigid rotation and the molecular mechanics model.
equation (1) with the torsional angle $\phi=0$ corresponding to the more stable trans-form, and with the values of N

$$
\begin{equation*}
V(\phi)=\sum_{n=1}^{N} V n(1-\cos n \phi) / 2 \tag{1}
\end{equation*}
$$

ranging from 3 to 6 . The Hamiltonian operator then takes the form (2) where $F(\phi)=h / 4 \pi C I_{\mathrm{r}}(\phi)$ and $I_{\mathrm{r}}(\phi)$ is the

$$
\begin{equation*}
H=-\frac{\mathrm{d}}{\mathrm{~d} \phi} F(\phi) \frac{\mathrm{d}}{\mathrm{~d} \phi}+V(\phi) \tag{2}
\end{equation*}
$$

reduced moment of inertia as defined by Pitzer. ${ }^{37}$ The F values at several angles for the three models in Table 1 are

Table 2. As expected, the shape of the $F(\phi)$ function varies from one model to another, reflecting the differing degrees of stiffness during the rotation. It is quite striking how relatively insensitive $F(\phi)$ is to the torsional twist for the molecular mechanics model in the region $0-90^{\circ}$. This is primarily a consequence of the rapid onset and large change in the length of the central $\mathrm{C}-\mathrm{C}$ bond which is characteristic of this model.

A computer program based on that of Lewis et al. ${ }^{25}$ was written to calculate the energy levels and wavefunctions associated with the above Hamiltonian. 50 Sine and 50 cosine functions were used in each calculation.

Table 3 summarizes our designation of the various potential curves and some of their important characteristics. Table 4 gives the decomposition of $V(\phi)$ from equation (1). It may be noted that although the details vary widely, there is general agreement that V_{1} is positive, V_{2} is positive, and the largest value as would be expected, V_{3} is positive and not negligible, and V_{4} and V_{6} are negative. In Table 5, we list the experimental and calculated spectroscopic transitions for $\Delta v=2$ localized within the transportion of the well. The geometrical model used to compute $F(\phi)$ was that employed by the original author(s), but in several cases a second model was used to calculate the energy levels, i.e. the potential curve was left unaltered, but $F(\phi)$ in equation (2) was modified in order to test the sensitivity of the computed frequencies to this particular parameter. The following points may be noted.
(1) The transitions calculated ab initio, PCL1, PCL2, and SB are at least $10 \mathrm{~cm}^{-1}(3 \%)$, but usually $<20 \mathrm{~cm}^{-1}(7 \%)$, greater than the observed values. But since the total molecular energy is still ca. $0.3-0.5$ atomic units above the estimated Hartree-Fock (HF) limit, ${ }^{38}$ small discrepancies of this magnitude are not unexpected. The Radom and Pople (RP) calculation (STO-3G) is never more than $4 \mathrm{~cm}^{-1}$ (1%) above the experimental values even though its predicted energy is nearly 2.0 atomic units above the HF limit.
(2) The only ab initio calculation which includes complete geometry optimization, SBS, leads to values that are in

Table 3
Summary data from the various torsional potential curves for buta-1,3-diene

Designation R	Reference	Experimental (E) or theoretical (T)	Rotational model "	Second stable form	Barrier height (cm ${ }^{-1}$)	Energy difference (trans-second stable form) (cm^{-1})
A Theoretical						
PCLl	8	$\mathrm{T}^{b}(a b$ initio, SCF)	R	gauche	2496	908
SB	7	$\mathrm{T}^{\text {b }}$ ($a b$ initio, $S \mathrm{CF}$)	R	gauche	2340	1179
SBS	10	T^{6} ($a b$ initio, SCF)	O	gauche	$2231{ }^{\text {c }}$	$1001{ }^{\text {c }}$
PCL2	8	$\mathrm{T}^{b}(a b$ initio, SCF + CI)	R	gauche	2314	585
RP	6	T^{6} (ab initio, SCF)	R	gauche	2311	917
B Experimental						
C	3	E (Spectroscopic)	MM	cis	2505	873
ASWB	1	E (Calorimetric)	R	cis	1750	848
DBC1	4	E (Spectroscopic)	G	cis	2656	1061
DBC2	4	E (Spectroscopic)	G	cis	2577	1153
DBC3	4	E (Spectroscopic)	G	gauche	2057	965

${ }^{a} \mathrm{R}=$ Rigid rotation; $\mathrm{O}=$ optimized in $a b$ initio calculation; $\mathrm{MM}=$ optimized from molecular mechanics model ; ${ }^{26} \mathrm{G}$, based on geometry of glyoxal. ${ }^{4} \quad{ }^{b}$ The total energies of the trans-conformer in atomic units are $E_{\mathrm{T}}(\mathrm{PCL} 1)-154.4643, E_{\mathrm{T}}(\mathrm{SB})-154.6931$, $E_{\mathbf{T}}(\mathrm{SBS})-154.7461, E_{\mathbf{T}}(\mathrm{PCL} 2)-154.7309$, and $E_{\mathrm{T}}(\mathrm{RP}) c a .-153.02$. ${ }^{*}$ These results are based on the four data points given by Skaarup et al. ${ }^{10}$ (see Table 2) and may change somewhat when additional data points become available.
listed in Table 2. Since F changes significantly, even for rigid rotation, it has been represented by the usual cosine series (3) where F_{n} takes the values given in section B of

$$
\begin{equation*}
F(\phi)=F_{0}+\sum_{n} F_{n} \cos n \phi \tag{3}
\end{equation*}
$$

worse agreement with experiment. However, the reason may be in part that Skaarup et al. ${ }^{10}$ only obtained four points on the potential curve, none of which was between 0 and 90°. As a consequence our Fourier analysis may be giving an imperfect representation of the actual curve in this
region. Furthermore, the formal double bond length in the calculations was much too short, and this may also have affected the shape of the curve.
(3) In going from the PCL1 curve to the PCL2 curve, which takes into account part of the electron correlation,
to the molecular mechanics model with its considerably greater flexibility (see C in Table 5). Furthermore, even though the transitions in SBS are based on a model with complete geometry optimization, a small improvement is nevertheless obtained with the model in which the $\mathrm{C}=\mathrm{C}$

Table 4

Model	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{8}
PCL1	274.5801	1789.9451	908.9121	-301.8630		
SB	749.0125	1413.5312	944.5491	-285.3401	112.8613	-38.4112
SBS	200.7970	1383.3921	1005.9551			
PCL2	-108.0830	1892.1169	725.0310	-178.8090		
RP	418.6904	1826.9175	498.0913	-189.5825	101.0873	-33.9290
C	600.0000	2068.0000	273.0000	-49.0000		
ASWB	439.9741	1309.2876	408.4067	151.6633	-0.1568	-43.5973
DBCl	941.0000	2115.9000	119.9000	-10.9000		
DBC2	1047.3000	1997.1000	105.2000	51.7000		-17.1000
DBC3	469.1000	1244.2000	909.0000	-177.1000		-19.8000

there are only small changes in the vicinity of $\phi 0^{\circ}$. Al- formal double bond is increased in length, more in keeping though the lower two transitions, $0 \mathrm{~T}-2 \mathrm{~T}$ and $1 \mathrm{~T}-3 \mathrm{~T}$, are not in quite such good agreement with experiment, the rest of the transitions are in better agreement. Furthermore, the spacings between transitions are increased with respect to those in PCL1, bringing them more in line with experiment. with the structural determination (see SBS in Table 5).

The spectroscopic results for the well associated with the less stable form are given in Table 6. The following points may be noted.
(1) With Carreira's cis-well, the transitions and spacings do not match the experimental values as closely as those for

Table 5
Observed and calculated Raman overtone transitions $\left(\mathrm{cm}^{-1}\right)$ for the trans-conformer of buta-1,3-diene

Transition	Observed	PCL1 ${ }^{\text {8, }}{ }^{\text {a }}$		SB ${ }^{7, b}$	SBS ${ }^{\mathbf{1 0 , ~}}$ c		PCL2 ${ }^{8, a}$		RP ${ }^{6}$	
0T-2T	323.0	$334.7{ }^{\text {g }}$	$334.5{ }^{\text {h }}$	$346.5{ }^{\text {g }}$	$392.9{ }^{\text {i }}$	$383.4{ }^{\text {h }}$	$337.1{ }^{\text {g }}$	$337.0^{\text {a }}$	$326.8{ }^{\text {g }}$	$326.6{ }^{\text {h }}$
1T-3T	317.6	330.8°	$330.6{ }^{h}$	$340.2{ }^{\text {g }}$	$382.2{ }^{\text {i }}$	$373.2{ }^{\text {h }}$	$331.3{ }^{\text {g }}$	$331.1{ }^{\text {h }}$	$320.7{ }^{\text {g }}$	$320.5{ }^{h}$
2T-4T	312.5	$326.5{ }^{\text {g }}$	$326.2^{\text {h }}$	$333.3{ }^{\text {g }}$	371.0^{i}	$362.7^{\text {a }}$	$325.2{ }^{\text {g }}$	$324.8{ }^{\text {h }}$	$314.3{ }^{\text {g }}$	$313.9{ }^{\text {h }}$
$3 \mathrm{~T}-5 \mathrm{~T}$	306.2	$321.8{ }^{\text {g }}$	$321.4{ }^{\text {h }}$	$325.9{ }^{\text {g }}$	$359.4{ }^{\text {i }}$	$351.7{ }^{\text {h }}$	$318.7{ }^{\text {g }}$	$318.4^{\text {h }}$	$307.4{ }^{\text {g }}$	$307.1{ }^{\text {h }}$
4T-6T	300.6	$316.5{ }^{\text {g }}$	$316.2{ }^{\text {h }}$	$318.1{ }^{\text {g }}$	$347.3{ }^{i}$	$340.2^{\text {h }}$	$311.9{ }^{\text {g }}$	$311.6^{\text {h }}$	$300.0{ }^{g}$	$299.8{ }^{\text {h }}$
$5 \mathrm{~T}-7 \mathrm{~T}$	293.7	311.0°	$310.7{ }^{\text {h }}$	$309.7{ }^{\text {g }}$	$334.5{ }^{\text {i }}$	$328.1{ }^{\text {h }}$	$304.6{ }^{9}$	$304.2^{\text {h }}$	$292.2{ }^{\text {g }}$	291.9^{h}
$6 \mathrm{~T}-8 \mathrm{~T}$	286.4	304.8 *	$304.4{ }^{\text {h }}$	$300.6{ }^{\text {g }}$	$320.7^{\text {i }}$	$315.3{ }^{\text {h }}$	$296.7^{\text {g }}$	$296.4{ }^{\text {h }}$	$284.0{ }^{\text {g }}$	$283.6{ }^{h}$
		$C^{3, e}$		Adjusted $a b$ initio ${ }^{f}$						
Transition	ASWB ${ }^{\text {1,d }}$			DBCl^{4}	DBC2 ${ }^{4}$	DBC3 ${ }^{4}$	(cis)	(gauche)		
0T-2T	$322.2{ }^{\text {g }}$	$324.4{ }^{\text {j }}$	$327.5{ }^{\text {k }}$	$323.4{ }^{\text {k }}$	$322.8{ }^{\text {k }}$	$322.3{ }^{k}$	$323.1{ }^{\text {k }}$	$322.4{ }^{\text {a }}$		
1T-3T	$315.5{ }^{\text {g }}$	$318.4{ }^{\text {j }}$	$321.6{ }^{\text {h }}$	317.8^{k}	$317.8^{\text {k }}$	$318.0{ }^{\text {k }}$	$317.7^{\text { }}$	$317.9{ }^{\text {h }}$		
2T-4T	$308.0{ }^{\text {g }}$	$312.3{ }^{\text {j }}$	$315.5{ }^{\text {h }}$	$312.1{ }^{\text {k }}$	$312.4{ }^{\text {k }}$	$312.9{ }^{k}$	$312.2^{\text {h }}$	$312.9{ }^{\text {h }}$		
$3 \mathrm{~T}-5 \mathrm{~T}$	$299.4{ }^{\text {g }}$	306.0^{j}	$309.2{ }^{\text {h }}$	$306.1{ }^{\text {k }}$	$306.5{ }^{\text {k }}$	$307.1{ }^{\text {k }}$	$306.4{ }^{\text {h }}$	$307.2^{\text {n }}$		
$4 \mathrm{~T}-6 \mathrm{~T}$	$289.7{ }^{\text {g }}$	$299.5{ }^{\text {j }}$	$302.7{ }^{\text {h }}$	$299.9{ }^{\text {k }}$	300.3 *	$300.6{ }^{\text {z }}$	$300.5^{\text {h }}$	$301.0^{\text {h }}$		
5T-7T	$278.9{ }^{\text {g }}$	$292.8{ }^{\text {j }}$	$295.9{ }^{\text {h }}$	$293.6{ }^{k}$	$293.6{ }^{k}$	$293.3{ }^{k}$	$294.3{ }^{\text {h }}$	$294.0{ }^{\text {h }}$		
6T-8T	$266.7{ }^{\text {g }}$	$285.1{ }^{j}$	$288.8{ }^{h}$	$287.0^{\text {k }}$	$286.5{ }^{\text {k }}$	$284.9{ }^{k}$	$287 .{ }^{\text {h }}$	$286.1{ }^{\text {h }}$		

${ }^{a}$ The Fourier analysis of the potential curve reported by these authors was used without change. ${ }^{b}$ In making the Fourier analysis the energies of $0,30,60,90,120,150$, and 180° were employed and converted to cm^{-1}. ${ }^{c}$ In making the Fourier analysis the energies given by these authors in $\mathrm{kcal} \mathrm{mol}^{-1}$ were employed and converted to cm^{-1}. ${ }^{d}$ In making the Fourier analysis the energies at $0,30,60,90,120,150$, and 180° were used, see equations in Figure 1 of ref. 1 , and converted to cm^{-1}. e^{e} The Fourier analysis of the curve in ref. 3 was used without change. ${ }^{f}$ cis-Case calculated from $2 V(\phi)=611.3181(1-\cos \phi)+2100.3933$ $(1-\cos 2 \phi)+255.1813(1-\cos 3 \phi)-68.4741(1-\cos 4 \phi)$. The first three $c i s$-well transitions $(\Delta \nu=2)$ from this potential curve are $271.2,267.8$, and $263.5 \mathrm{~cm}^{-1}$. Gauche case calculated from $2 V(\phi)=739.9771(1-\cos \phi)+1133.3484(1-\cos 2 \phi)+919.3832$ $(1-\cos 3 \phi)-126.0167(1-\cos 4 \phi)-59.1966(1-\cos 5 \phi)$, giving transitions at $273.5,264.4$, and $255.7 \mathrm{~cm}^{-7} \mathrm{~cm}^{-1}$. g Rigid rotation from experimental geometry ${ }^{\mathbf{1 2}}$ was used in computing $F(\phi)$. h Adjusted ab initio geometry was used (see Tables 1 and 2) in computing $F(\phi) . \quad{ }^{i} \mathrm{Ab}$ initio geometry of Skaarup et al. ${ }^{10}$ was used without change with $F_{0} 3.2848, F_{1} 0.7242, F_{2} 0.3500, F_{3} 0.1358$, and F_{4} 0.0452 . ${ }^{j}$ Consistent force field geometry of Allinger and Sprague ${ }^{26}$ was used in computing $F(\phi)$. ${ }^{k}$ The $F(\phi)$ employed is that of Durig et al. ${ }^{4}$
(4) Although the curve of Aston et al. ${ }^{1}$ based on calorimetric data fits the first spectroscopic transition quite well, the spacings between the levels are too great, which indicates that the trans-well is too narrow. Moreover the peak position is predicted to be at $c a .70^{\circ}$, furthest from 90° of all the predicted values.
(5) A change from the rigid rotation model to the adjusted $a b$ initio model with some flexibility has little effect on the energy levels for a fixed potential curve (see PCL1 and PCL2 in Table 5). However there is a more substantial effect in going from the modified ab initio model
the trans-well. For example, the observed difference in the first cis-well transitions is $7.2 \mathrm{~cm}^{-1}$ whereas the predicted difference is only $4.5 \mathrm{~cm}^{-1}$. To see if a modified geometry, with somewhat less flexibility, would result in better agreement, we have attempted to fit the observed transitions with the adjusted ab initio geometry (see Tables 1 and 2), using essentially Carreira's procedure. The trans-well transitions given in Table 5 are in the main slightly better than those obtained by Carreira. However, no better fit could be obtained for the cis-well, $271.2 \mathrm{~cm}^{-1}$ for the first transition and $3.4 \mathrm{~cm}^{-1}$ for the spacing between the first
and second transitions compared to the experimental values of 271.1 and $7.2 \mathrm{~cm}^{-1}$. The barrier height increased slightly from Carreira's value of 2505 to $2533 \mathrm{~cm}^{-1}$. Durig et al. ${ }^{4}$ were able to get a better fit, particularly the spacing, but this was obtained only because of the relatively small F values they used near 180° (which are known to be in error ${ }^{28}$).
assuming a gauche-well, is that obtained by Durig et al. ${ }^{4}$ but incorrect $F(\phi)$ values were used.* We have carried out calculations similar to these assuming a gauche-well with the same spectroscopic assignments, but using the adjusted $a b$ initio model for $F(\phi)$ and $V_{1}-V_{5}$ during the iteration. The transitions are listed in Tables 5 and 6 . The barrier height was found to be $2085 \mathrm{~cm}^{-1}$, the trans - gauche energy

Table 6

A cis
Observed and calculated overtone transitions for cis- and gauche-conformers of buta-1,3-diene

Transition	Observed	ASWB	C	DBC1	DBC2	Adjusted ab initio
0C-2C	271.1^{a}	194.2	269.4	271.0	271.1	271.2
1C-3C	263.9^{a}	194.7	264.9	263.9	264.1	267.8
2C-4C	256.7^{a}	189.0	259.6	257.6	256.4	263.5

B gauche

Transition	Observed	PCL1	PCL2	SB	DCB3	RP	Adjusted ab initio
$0^{+} \longrightarrow 2^{+}$	263.9^{b}	253.3	287.2	365.2	263.9	290.6	264.4
$0^{-} \longrightarrow 2^{-}$	271.1^{b}	319.9	347.6	370.5	272.2	372.5	273.5
$1^{+} \longrightarrow 3^{+}$		266.0	373.2	309.2	216.9	385.6	214.4
$1^{-} \longrightarrow 3^{-}$	256.7^{b}	338.3	395.3	341.8	256.5	414.0	255.7

(2) Although there is good agreement (i.e. 1-7\%) between the spectroscopic transitions predicted by the $a b$ initio calculations and the experimental values localized in the trans-well, there appears to be little, if any, correlation between the transitions predicted from the ab initio calculations and the Carreira or Durig et al. assignment of fre-
difference was 893 and the gauche - 180° energy difference $408 \mathrm{~cm}^{-1}$. The overall agreement with the observed spectrum is not quite as good as that found by Durig but is about the same as that found by Carreira with a cis-well. The spacing between the first two levels in the gauche-well is now too large, 9.1 compared with $7.2 \mathrm{~cm}^{-1}$.

Table 7
Heat capacity $C_{\mathrm{p}}{ }^{\circ}$ as a function of temperature calculated from the corresponding torsional potential curves
$C_{\mathrm{p}}{ }^{\circ} / \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1 a}$

T/K		Experimental ${ }^{22}$ a	PCL1 ${ }^{\prime \prime}$	SB ${ }^{\text {b }}$	SBS ${ }^{\text {c }}$	PCL2 ${ }^{\text {b }}$	RP ${ }^{\text {b }}$	ASWB ${ }^{\text {b }}$	$\mathrm{C}^{\text {d }}$
220		14.73 ± 0.07	14.73	14.44	14.69	15.63	14.75	14.82	14.64
240		15.80 ± 0.08	15.81	15.44	15.80	16.66	15.81	15.91	15.66
260		16.91 ± 0.08	16.93	16.50	16.96	17.67	16.92	17.03	16.73
280		18.04 ± 0.09	18.07	17.59	18.15	18.68	18.05	18.19	17.82
300		19.19 ± 0.10	19.22	18.71	19.34	19.67	19.18	19.35	18.93
320		20.34 ± 0.10	20.36	19.84	20.53	20.65	20.31	20.51	20.04
		DBCl	DBC2	DBC3	Adjusted ab initio (cis)		Adjusted ab initio (gauche)		
	220	$0 \quad 14.48$	14.44	14.71	14.63		14.48		
	240	$0 \quad 15.47$	15.42	15.79	15.66		15.49		
	260	$0 \quad 16.51$	16.44	16.91	16.72		16.56		
	260	$0 \quad 17.59$	17.51	18.08	17.82		17.67		
	300	$0 \quad 18.68$	18.59	19.26	18.92		18.80		
	320	$0 \quad 19.78$	19.69	20.43	20.02		19.95		

${ }^{a} 1$ cal $=4.1833 \mathrm{~J} .{ }^{b}$ Rigid rotation with the experimental geometry of the trans-conformer ${ }^{12}$ used to compute the torsional vibrational frequencies in calculating the partition function. ${ }^{c}$ Ab initio geometry of Skaarup et al. ${ }^{10}$ (see footnote c, Table 3) was used to compute the torsional vibrational frequencies in calculating the partition function. Similar results are obtained in the adjusted ab initio geometry described in Tables 1 and 2 is employed. ${ }^{d}$ Molecular mechanics model for the rotation (see Tables 1 and 2) was used to compute the torsional vibrational frequencies in calculating the partition function.
quencies to the second stable form. The difficulty is that ab initio calculations generally predict a rather low gauche 180° energy difference which is inconsistent with a small spacing between levels
(3) There is fair internal agreement among the calculations PCL1, PCL2, and RP with respect to the spacing between $0^{+} \longrightarrow 2^{+}$and $0^{-} \longrightarrow 2^{-}$levels in a gauche-well. In view of the good agreement, to within a few cm^{-1}, between the experimental spacings in the trans-well and those predicted using these basis sets, one is tempted to conclude that if the second stable form has a gauchestructure then the spacing between the two lowest levels is likely to be $60-80 \mathrm{~cm}^{-1}$. This is in sharp contrast to the assignments of Durig et al. ${ }^{4}$ which would give a spacing of only $7 \mathrm{~cm}^{-1}$.
(4) The best agreement with the experimental data,

B Thermodynamic Calculations, $C_{\mathrm{p}}{ }^{\circ}$ and S°.-To calculate the contribution of the internal rotation to these functions the partition function was set up as the summation of the appropriate torsional energy level terms. ${ }^{39}$ All sums were carefully checked for convergence. The remaining contributions to the thermodynamic functions were based on the RRHO approximation ${ }^{33,40}$ using the vibrational assignments of Shimanouchi. ${ }^{23}$ While there is likely to be some interaction between the rotation and the torsion and between the torsion and other vibrations which

* If $F(\phi)$ for the modified ab initio model is used with the Durig et al. potential curve, the spacing between the lowest transitions in the gauche-well increases from ca. 8 to nearly $20 \mathrm{~cm}^{-1}$. This suggests that an even larger gauche - 180° energy difference would be required for $F(\phi)$ in the ab initio or molecular mechanics model than that found in the Durig et al. calculation.
cannot easily be incorporated into the calculation, Pitzer ${ }^{37}$ has noted that it is best to take all quantities appropriate to the equilibrium configuration and in a first approximation, to ignore changes in angle.*

In Table 7, $C_{\mathrm{p}}{ }^{\circ}$ is given as a function of temperature over the range $220-320 \mathrm{~K}$, and compared with the experimental results. ${ }^{22}$ Although all the values derived from the various potential curves are in fairly close agreement with experiment, there are some interesting differences.
(1) The variation of $C_{\mathrm{p}}{ }^{\circ}$ with temperature based on the $a b$ initio calculation PCL2 gives the worst agreement, particularly at the lower temperatures. This can be traced back to the small energy difference between the trans- and gauche-forms, which results in too many energy levels below $1000 \mathrm{~cm}^{-1}$. These contribute significantly to $C_{\mathrm{p}}{ }^{\circ}$ in the temperature range covered, and hence lead to calculated values that are too large.
(2) The variation based on the ab initio calculation SB also gives relatively poor agreement. In this case, however, the calculated values are too small. This can be traced back to the relatively large energy differences between the trans - gauche form and gauche - 180° forms, larger than those obtained in any of the other $a b$ initio calculations.
(3) The variation based on the $a b$ initio calculations PLCl and RP give the best agreement with experiment, usually differing by $<0.03 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. In the PCL1 case this may be fortuitous, because the lower transitions localized in the trans-well differ by some $10-15 \mathrm{~cm}^{-1}$ from the observed values (see Table 5). As a consequence, there must be some compensation from the energy levels associated with the less stable form. On the other hand, the RP calculation does predict good spectroscopic data for the trans-well. In fact, the RP calculation is the only ab initio calculation which fits both the spectroscopic data and the $C_{\mathrm{p}}{ }^{\circ}$ data with good accuracy.
(4) The ASWB curve gives acceptable agreement as would be expected, since this cuive was derived from the calorimetric data. However, this would also appear to be fortuitous since the transitions predicted for the trans-well are in poor agreement with the spectroscopic assignments of Carreira. It may be noted that our results differ slightly from the original calculations of Aston et al. because we have used a more up-to-date assignment of vibrational frequencies. ${ }^{23}$
(5) The $C_{\mathrm{p}}{ }^{\circ}$ values based on the curves $\mathrm{C}, \mathrm{DBC1}$, and DBC2 which predict the second stable form to have the cisconfiguration lie considerably below the experimental results, and the discrepancy gets progressively bigger as the temperature increases.
(6) The adjusted ab initio gauche-model curve also gives rather poor agreement with experiment, which is contrary to that obtained from the DBC3 potential curve.

DISCUSSION

Assignment of the Low Frequency Raman Overtones.The correct assignment of the transitions observed at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ to either a cis-, or gauche-, or

* This is true since it can be shown that ' changes in the mass or inertia factor for the various normal modes of vibration just cancel the changes in moment of inertia provided all motions are treated classically ' ${ }^{37}$ Pitzer also notes that the method should yield results with errors not appreciably greater than the experimental errors for data available in 1945-1946. The experimental $C_{p}{ }^{\circ}$ data on butadiene was obtained at this time. ${ }^{22}$
even the trans-well, would do much to further understanding of the torsional potential curve for buta-1,3diene. In this section we shall examine in turn the consequences of making these various assignments.
(a) cis-Well. If the above transitions are assigned to a cis-well several points should be considered.
(1) The potential curve derived by Carreria does not fit the spacings between these levels particularly well, i.e., a spacing of $c a .4 .5$ compared with the experimental value of $c a .7 .2 \mathrm{~cm}^{-1}$. Moreover, this spacing relates to the extremely flexible molecular mechanics model, and if the less flexible adjusted $a b$ initio model is actually a better representation, the calculated spacing is reduced to only $3.4 \mathrm{~cm}^{-1}$, less than half the experimental value.
(2) The heat capacity predicted from the Carreira, Durig et al., and adjusted ab initio cis-wells are all less than the experimental values and the discrepancy gets worse the higher the temperature. This originates in the observed large spacing of $7.2 \mathrm{~cm}^{-1}$ which requires the cis-well to be rather narrow. In the calculation this is achieved by raising the barrier height above that determined by Aston et al. from calorimetric data by more than $750 \mathrm{~cm}^{-1}$, and as a consequence lower values of $C_{\mathrm{p}}{ }^{\circ}$ result.
(3) The barrier heights of $7.2-7.7 \mathrm{~cm}^{-1}$ obtained by Carreira, ${ }^{3}$ Durig et al., ${ }^{4}$ and the adjusted ab initio geometry model are greater than those predicted by most ab initio calculations. Many of these were obtained using rigid rotation models, and even lower values would be obtained with geometry optimization thus accentuating the difference. In addition both Dumbacher ${ }^{9}$ and Pincelli et al. ${ }^{8}$ found that if electron correlation is included in the calculation the barrier height is further reduced below the single determinant value. A further indication that the single determinant values for rotation about the central bond in buta-1,3-diene are likely to be somewhat higher and not lower than the experimental value is afforded by a comparison of results for ethane and for ethylene. For rotation about the single bond in ethane the calculated values usually agree with experiment to within $1 \mathrm{kcal} \mathrm{mol}^{-1}$, whereas for rotation about the double bond in ethylene the calculated values are usually too high by $c a .60-70 \mathrm{kcal} \mathrm{mol}^{-1} .6,41,42$ In view of the 'partial double bond character' of the central bond in buta-1,3-diene, it seems likely the $a b$ initio barrier heights should be higher than the actual barrier height, not lower.
(4) $A b$ initio calculations almost invariably \dagger suggest a gauche-well as do many recent semiempirical calculations such as MINDO/3, ${ }^{44}$ NDDO, ${ }^{43}$ and PCILO. ${ }^{45}$

[^2](5) N.m.r. data (although obtained in solutions) also suggest a gauche-well. ${ }^{2}$

In view of these considerations, there would appear to be no compelling reason for assigning the transitions at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ to a cis-well.
(b) gauche-Well. If these transitions are assigned to a gauche-well the following points may be noted.
(1) The barrier height is lowered to $5.9-6.0 \mathrm{kcal} \mathrm{mol}^{-1}$, lower than that predicted by the single determinant $a b$ initio calculations that employ rigid rotation as would be expected.
(2) The relatively large spacing between the levels can be accounted for. We find $9.1 \mathrm{~cm}^{-1}$ using the $a b$ initio model with $V_{1}-V_{5}$ in equation (1). If $V_{1}-V_{6}$ are employed this can be reduced to $8.9 \mathrm{~cm}^{-1}$. Although these results are slightly high they differ from the experimental spacing by $<2 \mathrm{~cm}^{-1}$ whereas Carreira's published curve based on a cis-well gives a difference of $2.7 \mathrm{~cm}^{-1}$.
(3) The predicted variation of $C_{\mathrm{p}}{ }^{\circ}$ with temperature is in relatively poor agreement with experiment for the adjusted ab initio gauche-model. This is caused by the relatively large trans - gauche energy difference of nearly $1200 \mathrm{~cm}^{-1}$. Ab initio calculations also suggest this should be lower (see Table 3) which would lead to better agreement.
(4) A relatively large gauche -180° energy difference of over $400 \mathrm{~cm}^{-1}$ is predicted using the adjusted $a b$ initio geometry model (see Table 7). Most ab initio calculations of the potential energy curve on the other hand, have suggested a somewhat smaller difference of 30 $300 \mathrm{~cm}^{-1}$ which is also consistent with results using the PCILO method. ${ }^{45}$ The SB calculation, however, found the energy difference to be over $600 \mathrm{~cm}^{-1}$.
(5) The gauche-well obtained by Durig et al. as well as that based on the adjusted $a b$ initio geometry requires a transition near $215 \mathrm{~cm}^{-1}$ (see Table 6). Although the region has been studied experimentally no such transition has been observed. ${ }^{28}$
(6) The potential curves derived from ab initio calculations strongly suggest a larger spacing ($60-80 \mathrm{~cm}^{-1}$) between the gauche-transitions, which is inconsistent with the $7.2 \mathrm{~cm}^{-1}$ spacing required by the Durig et al. assignment. It would seem somewhat unlikely that this large discrepancy could be caused by the omission of electron correlation because in going from the PCL1 with no correlation to the PCL2 calculation with some correlation the reduction is only from ca. 66 to $60 \mathrm{~cm}^{-1}$.

Hence although in some respects of assignment of the transitions at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ to a gaucheinstead of a cis-well is more satisfactory, points (3)-(6) must be considered as evidence against this possibility.
(c) trans-Well. It could be that the peaks observed at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ are due to higher level transitions in the trans-well. To explore this possibility, we consider again Carreira's potential curve. He already finds higher transitions at 270.8 and $262.7 \mathrm{~cm}^{-1}$ localized in the trans-well. These agree just as well with the observed transitions as his values of 269.2 and 264.7 cm^{-1} localized in the cis-well. If this were to be the case,
however, it is then difficult to understand the discontinuity in the spectrum near $280 \mathrm{~cm}^{-13}{ }^{3}$ The spectrum in this region is not devoid of structure and two small peaks are present on either side of $280 \mathrm{~cm}^{-1}$. One of these peaks could clearly be a transition localized in the trans-well between the peaks assigned to this well at 271.1 and $286.4 \mathrm{~cm}^{-1}$. In fact, the potential curve predicted by Carreira has a transition localized in the trans-well at $278.4 \mathrm{~cm}^{-1}$ with an intensity about onethird that of the transition at $286.4 \mathrm{~cm}^{-1}$. With regard to the origin of the second peak, it may be noted that the RP (STO-3G) calculation, which predicts the low lying trans-well transition to within $3 \mathrm{~cm}^{-1}$, predicts a gauchewell transition at $290.6 \mathrm{~cm}^{-1}$. Since the lowest transwell transitions are predicted to be a few cm^{-1} too high this could be the origin of the peak observed between 280 and $290 \mathrm{~cm}^{-1}$. This is consistent with the PCL2 calculation which finds the $\left(0^{+} \rightarrow 2^{+}\right)$transition at $287.2 \mathrm{~cm}^{-1}$.*

To further investigate the likelihood that the peaks at $271.1,263.9$, and $256.7 \mathrm{~cm}^{-1}$ belong to the trans-well, we have carried out additional calculations fitting both the spectroscopic and thermodynamic data. All transitions from 323.0 to $263.9 \mathrm{~cm}^{-1}$ were assumed to be localized in the trans-well and the value of the $\mathbf{0}^{+} \rightarrow \mathbf{2}^{+}$gauche-level was assumed to be $c a .283 \mathrm{~cm}^{-1}$. (The transition observed at $256.7 \mathrm{~cm}^{-1}$ was dropped since it is the most uncertain value.) $C_{\mathrm{p}}{ }^{\circ}$ was studied as a function of temperature over the range $220-320 \mathrm{~K}$ using the adjusted ab initio geometry to compute $F(\phi)$ and only $V_{1}-V_{4}$ in equation (1). With regard to the results listed in Table 8, we draw attention to the following points.
(1) Overall, the spectroscopic predictions are better than those of Carreira. ${ }^{3}$
(2) The $C_{\mathrm{p}}{ }^{\circ}$ values never differ by more than 0.03 cal $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ from the experimental values, and are also in significantly better agreement than the values predicted from Carreira's curve (see Table 7).
(3) The barrier height of $6.6 \mathrm{kcal} \mathrm{mol}^{-1}$ is below the single determinant values of SB, PCL1, and Dumbacher, ${ }^{9}$ and essentially the same as that obtained by Radom and Pople. ${ }^{6}$ Although it is slightly above the SB value, this latter value is somewhat uncertain because only a few points on the potential curve were obtained and the maximum occurs at angle below 90° where no points were obtained.
(4) A very low gauche - 180° energy difference of $30 \mathrm{~cm}^{-1}$ is predicted, which would lead to significant splitting of the degenerate levels found with deeper gauche-wells.
(5) A second gauche-well transition is predicted at $338.9 \mathrm{~cm}^{-1}$. In the RP and PCL2 calculations this transition was found at 372.5 and $347.6 \mathrm{~cm}^{-1}$, respectively. No attempt was made to adjust the value because it lies outside the range of the published spectrum

* This interpretation of the data is not inconsistent with the PCLl calculation, since (i) the trans-well transitions in this case are too high and (ii) the variation of $C_{\mathrm{p}}{ }^{\circ}$ with temperature is very good which implies that the predicted gauche-well transition at $253 \mathrm{~cm}^{-1}$ is too low.
which extends only to $340 \mathrm{~cm}^{-1}$. By using higher harmonics in equation (1), however, considerable adjustment could be made without any significant change in the $C_{\mathrm{p}}{ }^{\circ}$ values.

Table 8

Properties of the torsional potential curve based upon both spectroscopic and thermodynamic data
A Characteristic features
$2 \mathrm{~V}(\phi)=347.2960(1-\cos \phi)+1790.0000(1-\cos 2 \phi)+$ $612.7940(1-\cos 3 \phi)-179.7781(1-\cos 4 \phi)$ Barrier height $2321 \mathrm{~cm}^{-1}\left(6.63 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ at 82.8° trans - gauche energy difference $930 \mathrm{~cm}^{-1}\left(2.66 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ gauche -180° energy difference $\quad 30 \mathrm{~cm}^{-1}\left(0.09 \mathrm{kcal} \mathrm{mol}^{-1}\right)$
B Predicted Raman frequencies (cm^{-1})

trans		Obs. - calc. $^{\text {a }}$	gauche	
0--2	322.7		0-2	282.3
1-3	317.7	-0.1	1-3	338.9
2-4	312.4	+0.1		
3-5	306.8	-0.6		
4-6	300.9	-0.3		
5-7	294.6	-0.9		
6-8	287.6	-1.2		
7-9	280.4	0.0		
8-10	272.5	- 1.4		
9-11	263.8	+0.1		

C	Predicted heat capacity (cal K${ }^{-1} \mathrm{~mol}^{-1}$)		
T / K	$C_{\mathrm{p}}{ }^{\circ}$	Obs. - calc. 6	
220	14.76	-0.03	
240	15.83	-0.03	
260	16.94	-0.03	
280	18.07	-0.03	
300	19.21	-0.03	
320	20.34	0.00	

${ }^{a}$ Experimental values taken from ref. 3. ${ }^{6}$ Experimental values taken from ref. 22 .

Taking into account all the various considerations in (a)-(c), it seems more probable that the transitions at 271.1 and $263.9 \mathrm{~cm}^{-1}$ are localized in the trans-well.

We have shown that it is possible to set up a potential curve for rotation about the central $\mathrm{C}-\mathrm{C}$ bond in buta-1,3-diene which predicts both the torsional spectrum and the variation of $C_{p}{ }^{\circ}$ with temperature quite accurately, and, in addition, is in substantial agreement with the results of $a b$ initio calculations. This latter point we regard as important, since wherever an unambiguous comparison between theory and experiment can be made, for instance in the case of the torsional spectrum localized in the trans-well, there is good agreement between the two. Furthermore, the assignment of torsional frequencies as proposed either by Carreira or by Durig et al. does not result in such a good variation of $C_{\mathrm{p}}{ }^{\circ}$ with temperature, and is more at variance with the $a b$ initio calculations.

But the potential curve which we have been led to propose, with only one of the observed transitions (ca. $283 \mathrm{~cm}^{-1}$) assigned to a gauche-well, is nevertheless not unique, and its shape in this region is poorly determined. The curves proposed by Carreira and Durig et al. are, however, open to similar criticism, especially with regard to the peak height since none of the observed transitions involved levels above $1500 \mathrm{~cm}^{-1}$ while the peak heights exceed $2000 \mathrm{~cm}^{-1}$.

In conclusion, it would appear to us that in order to make a more definitive choice for the structure of the second stable conformer of buta-1,3-diene further work is needed along the following lines.
(1) The Raman spectrum should be examined for additional torsional peaks from $c a .150$ to $450 \mathrm{~cm}^{-1}$.
(2) A similar Raman spectrum should be obtained for deuteriated butadienes. Some data of this kind are already available, ${ }^{24}$ but only the lower transitions located in the trans-well were observed. We have calculated the spectrum for $\left[1,1,4,4-{ }^{-} \mathrm{H}_{4}\right]$ buta-1,3-diene using the potential curve of Table 8. The three lowest transitions calculated for the trans-well agree with experiment to within $0.3 \mathrm{~cm}^{-1}$. The lowest transition localized in the gauche-well is predicted to be at $253 \mathrm{~cm}^{-1}$, a frequency which is lower than the first eleven localized in the trans-well.
(3) Additional $a b$ initio calculations with complete geometry optimization are called for. The problem with previous calculations, e.g. at a single ζ level such as STO-3G, is that the central single bond in trans-buta1,3 -diene is found to be ca. $0.025 \AA$ too long, and the double bond(s) ca. $0.030 \AA$ too short. ${ }^{29-31}$ Hence, if geometry optimization were to be carried out at this level of calculation, the results would necessarily be suspect because the molecule would be highly distorted. This problem, however, now seems near resolution. The basis set used in the SBS calculations is already adequate with regard to predicting the length of the single bond, actually giving the experimental value of $1.463 \AA$ and, although the length of the double bond was still found to be too short by ca. $0.020 \AA$, Jaszunski et al. ${ }^{47}$ have recently reported calculations on ethylene using a double ζ basis set with geometry optimization that gives a double bond length of $1.335 \AA$ in excellent agreement with experiment. There is thus good reason to believe that calculations at an appropriate double ζ level with full geometry optimization would do much to clarify the nature of the torsional potential curve for buta-1,3-diene, and with it the structure of the less stable form.
[7/2105 Received, 1st December, 1977]

REFERENCES

${ }^{1}$ (a) J. G. Aston, G. Szasz, H. W. Wooley, and F. G. Brickwedde, J. Chem. Phys., 1946, 14, 67; (b) L. M. Sverdlov and E. N. Bolotina, Russ. J. Phys. Chem., 1962, 36, 1502; (c) D. A. Compton, W. O. George, and W. F. Maddams, J.C.S. Perkin II, 1976, 1666.
${ }_{2}$ R. L. Lipnick and E. W. Garbisch, jun., J. A mer. Chem. Soc., 1973, 95, 6370.
${ }^{3}$ L. A. Carreira, J. Chem. Phys., 1975, 62, 3851.
${ }^{4}$ J. R. Durig, W. E. Bucy, and A. R. H. Cole, Canad. J. Phys., 1975, 53, 1832.
${ }_{5}^{5}$ R. J. Buenker and J. L. Whitten, J. Chem. Phys., 1968, 49, 5381.
${ }_{6}$ L. Radom and J. A. Pople, J. Amer. Chem. Soc., 1970, 92, 4786.
${ }^{7}$ P. N. Skancke and J. E. Boggs, J. Mol. Structure, 1973, 16, 179.
${ }_{8}$ U. Pincelli, B. Cadioli, and B. Levy, Chem. Phys. Letters, 1972, 13, 249.
${ }^{9}$ B. Dumbacher, Theor. Chim. Acta, 1972, 23, 346.
${ }_{10}{ }^{10}$ S. Skaarup, J. E. Boggs, and P. N. Skancke, Tetrahedron, 1976, 32, 1179.
${ }^{11}$ J. A. Altmann and W. F. Reynolds, J. Mol. Structure, 1977, 36, 149.

12 K. Kuchitsu, T. Fukuyama, and Y. Morino, J. Mol. Structure, 1968, 1, 463.
${ }^{13}$ W. Haugen and M. Traetteberg, Acta Chem. Scand., 1966, 20, 1726.
${ }^{14}$ V. Schomaker and L. Pauling, J. Amer. Chem. Soc., 1939, 61, 1769.
${ }_{15}$ R. S. Berry, J. Chem. Phys., 1957, 26, 1660.
${ }^{16}$ M. J. S. Dewar and C. deLlano, J. Amer. Chem. Soc., 1969, 91, 789.
${ }_{17}$ T. M. Sudgen and A. D. Walsh, Trans. Faraday Soc., 1945. 4176.

18 K. Watanabe, J. Chem. Phys., 1957. 26, 542.
19 P. George, M. Trachtman, C. W. Bock, and A. M. Brett, Theor. Chim. Acta, 1975, 38, 121.
${ }^{20}$ P. George, M. Trachtman, C. W. Bock, and A. M. Brett, Tetrahedron, 1976, 32, 1357.
${ }_{21}$ P. George, M. Trachtman, C. W. Bock, and A. M. Brett, J.C.S. Perkin I1, 1976, 1222.
${ }^{22}$ R. B. Scott, C. H. Meyers, R. D. Rands, F. G. Brickwedde, and N. Bekkedahe, J. Res. Nat. Bureau Standards, 1945, 35, 39.
${ }_{23}$ T. Shimanouchi,' Tables of Molecular Vibrational Frequencies NSRDS-NBS 6, 11, 17,' U.S. Govt. Printing Office, Washington, 1967.
${ }_{24}$ A. R. H. Cole, A. A. Freene, and G. A. Osborne, J. Mol. Spectroscopy, 1973, 48, 212.
${ }^{25}$ J. D. Lewis, T. B. Malloy, jun., T. H. Chao, and J. Laane, J. Mol. Structure, 1972, 12, 427.
${ }^{26}$ N. L. Allinger and J. T. Sprague, J. Amer. Chem. Soc., 1973, 95, 3893.
${ }_{27}$ D. A. Ramsay and C. Zauli, Acta Phys. Acad. Sci. Hung., 1974, 35, 79.
${ }_{28}$ W. E. Bucy, personal communication.
${ }^{29}$ W. J. Hehre and J. A. Pople, J. Amer. Chem. Soc., 1975, 97, 6941.
${ }^{30}$ G. J. Mains, P. George, M. Trachtman, A. M. Brett, and
C. W. Bock, J. Mol. Structure 1977, 36, 317.
${ }^{31}$ K. B. Wiberg and J. J. Wendoloski, J. Amer. Chem. Soc., 1976, 98, 5465.
${ }^{32}$ G. J. Mains, P. George, M. Trachtman, A. M. Brett, and C. W. Bock, J. Mol. Structure, 1977, 41, 87.
${ }^{33}$ G. J. Mains, P. George, M. Trachtman, and C. W. Bock, in preparation.
${ }^{34}$ P. Pulay, Mol. Phys., 1969, 17, 197.
${ }^{35}$ D. R. Lide, Tetrahedron, 1962, 17, 125.
${ }^{36}$ L. S. Bartell, E. A. Roth, C. D. Hollowell, K. Kuchitsu, and J. E. Young, jun., J. Chem. Phys., 1965, 42, 2683.
${ }_{31}$ K. S. Pitzer, J. Chem. Phys., 1946, 14, 239.
${ }^{38}$ P. George, M. Trachtman, A. M. Brett, and C. W. Bock, Internat. J. Quantum Chem., 1977, 12, 61.
${ }^{39}$ J. E. Mayer and M. G. Mayer, ' Statistical Mechanics ', Wiley, New York, 1940.
${ }^{40}$ G. J. Janz, ' Estimation of Thermodynamic Properties of Organic Compounds ', Academic Press, New York, 1958.

41 U. Kaldor and I. Shavitt, J. Chem. Phys., 1968, 48, 191.
${ }_{42}$ R. J. Buenker, J. Chem. Phys., 1968, 48, 1368.
${ }^{43}$ F. Burnstock, H.-J. Hoffmann, and H.-J. Kohler, Theor. Chim. Acta, 1976, 42, 311.
${ }_{44}$ R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Amer. Chem. Soc., 1975, 97, 1294.
${ }^{45}$ H.-J. Hofmann, H.-J. Kohler, and T. Weller, Tetrahedron, 1976, 32, 1303.
${ }_{46}$ A. J. P. Devaquet, R. E. Townshend, and W. J. Hehre, J. Amer. Chem. Soc., 1976, 98, 4068.
${ }^{47}$ M. Jaszunski and E. Kochanski, J. Amer. Chem. Soc., 1977, 9, 4624 .

[^0]: \dagger This is contrary to some semiempirical calculations in which the cis- or gauche-form was found to be the more stable. ${ }^{15,16}$ Furthermore, Sudgen et al. ${ }^{17}$ have argued on the basis of their observation of a low ionization potential that at room temperature a considerable portion of buta-1,3-diene exists in the cis-form. Recent measurements by Watanabe ${ }^{18}$ have not confirmed their result.

[^1]: * To be assured that an increment of $0.022 \AA$ is appropriate for the formal double bond with this particular basis set, a complete geometry optimization was carried out on ethylene using the MOLPRO program of Pulay. ${ }^{34}$ The $\mathrm{C}=\mathrm{C}$ bond length was found to be $1.315 \AA$, which when incremented by $0.022 \AA$ yields $1.337 \AA$ in excellent agreement with the experimental values of $1.335{ }^{35}$ and $1.336 \AA \AA^{36}$

[^2]: \dagger There are two $a b$ initio calculations that favour a $c i s$-well. Radom and Pople ${ }^{6}$ found using STO-3G that if the $\mathrm{C}-\mathrm{C}=\mathrm{C}$ angle was allowed to vary during the rotation (but all bond lengths and the remaining bond angles were held fixed) the well changed from gauche to cis. But studies by Devaquet et al. ${ }^{46}$ in the 4-31G basis set, at completely optimized STO-3G geometries, found the gaucheform to be more stable. Dumbacher ${ }^{9}$ also found a cis-well after CI, but he employed a geometry for buta-1,3-diene with a central $\mathrm{C}-\mathrm{C}$ bond length of $1.483 \AA, c a .0 .020 \AA$ larger than the currently accepted value. ${ }^{12}$ This would tend to lower the interaction between the terminal CH_{2} groups near 180° and would favour a cisconfiguration.

